

Subscriber access provided by ISTANBUL TEKNIK UNIV

# Premnafolioside, a New Phenylethanoid, and Other Phenolic Compounds from Stems of Premna corymbosa var. obtusifolia

Kaori Yuasa, Toshinori Ide, Hideaki Otsuka, and Yoshio Takeda

J. Nat. Prod., 1993, 56 (10), 1695-1699• DOI: 10.1021/np50100a006 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

# More About This Article

The permalink http://dx.doi.org/10.1021/np50100a006 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article



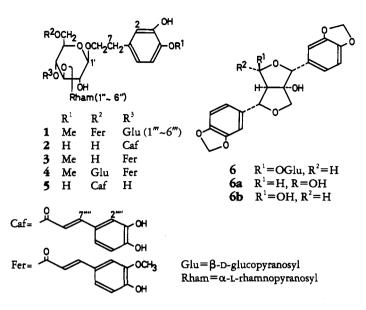
Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

## PREMNAFOLIOSIDE, A NEW PHENYLETHANOID, AND OTHER PHENOLIC COMPOUNDS FROM STEMS OF PREMNA CORYMBOSA VAR. OBTUSIFOLIA

#### KAORI YUASA, TOSHINORI IDE, HIDEAKI OTSUKA,\*

Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734, Japan

#### and YOSHIO TAKEDA


Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1 Minamijousanjimachou, Tokushima 770, Japan

ABSTRACT.—From an MeOH extract of the stems of *Premna corymbosa* var. obtusifolia, thirteen compounds were isolated. The structure of a new compound 1 was determined to be 3-hydroxy-4-methoxyphenethyl alcohol  $\beta$ -D-(3'-0- $\alpha$ -L-rhamnopyranosyl,-4'-0- $\beta$ -D-glucopyranosyl,-6'-0-feruloyl) glucopyranoside. Confirmation of the stereochemical structure of 4-epi-gummadiol-4-0- $\beta$ -D-glucopyranoside [6] was also performed in this study.

From the leaves of *Premna corymbosa* (Burm. fil.) Rottb. et Willd. var. *obtusifolia* (R. Br.) Flecher (Verbenaceae), harvested on an Okinawan island, premcoryoside, a conjugate of verbascoside and mussaenosidic acid, was isolated (1). From the stems of the same plant, a new phenyl ethanoid, named premnafolioside [1], and twelve known compounds have now been isolated from the *n*-BuOH soluble fraction of the MeOH extract.

Premnafolioside [1],  $[\alpha]D - 35.8^{\circ}$ , was obtained as an amorphous pale yellow powder whose elemental composition was determined to be  $C_{37}H_{50}O_{20}$  by negative hrfabms. The uv  $\lambda$  max at 206, 289, and 326 nm, and ir absorption at 3399 ( $\nu_{0H}$ ), 1696 (a conjugated ester), 1632 (a double bond), and 1595 and 1516 (aromatic rings) cm<sup>-1</sup> were very similar to those of verbascoside [2] and martynoside [3] (2), which co-exist in this plant. The <sup>1</sup>H nmr spectrum showed the presence of two units of aromatic protons coupled in an ABX system, a trans double bond [ $\delta$  6.40 (d, J=16 Hz) and 7.26 (d, J=16Hz)], anomeric protons for  $\beta$ -glucopyranose [ $\delta$  4.34 (d, J=8 Hz)] and for rhamnopyranose [ $\delta$  5.35 (d, J=2 Hz)] and two MeO signals. The <sup>13</sup>C-nmr spectrum indicated that, besides the presence of the above-mentioned moieties, there was one more molecule of non-substituted  $\beta$ -glucopyranose [ $\delta_{H-1^{m}}$  4.32 (d, J=9 Hz),  $\delta_{C-1^{m}}$  104.34] in the skeleton. These results indicated that premnafolioside [1] was a derivative of martynoside [3] (see Table 1), having one more glucopyranose unit.

A phenylethanoid 4, which has an extra glucose unit at the 6 position of the glucopyranoside in martynoside [3], was isolated from other plant sources (3, 4), but the <sup>13</sup>C-nmr chemical shifts of 1 were not superimposable with those of 6'-0- $\beta$ -D-glucopyranosyl martynoside (see 1 and 4 in Table 1). Namely, significant differences in the chemical shifts of C-4' and C-6' between 4 ( $\delta$  70.47 and 69.47, respectively) and premnafolioside [1] ( $\delta$  76.2 and 63.7, respectively) suggested that the extra glucose and acyl moieties in 4 have been exchanged. This was supported by the fact that the <sup>13</sup>C-nmr chemical shift of the C-6' position of isoacteoside [5] ( $\delta$  64.6) (5–7) was close to that of 1. Similarly, the <sup>1</sup>H-nmr spectrum suggested acylation-induced downfield shifts at the H-6' protons by 0.93 and 0.72 ppm from 3 to 1. On irradiation of the anomeric proton of rhamnopyranose at  $\delta$  5.53 in the long-range selective decoupling experiment, the sharpening of the signal  $\delta_c$  79.36 (C-3') in the coupled <sup>13</sup>C-nmr spectrum ruled out the possibility of exchange of the two sugar moieties attached to the core glucopyranose. Thus, the structure of 1 is 3-hydroxy-4-methoxyphenethyl alcohol  $\beta$ -D-(3'-0- $\alpha$ -L-rhamnopyranosyl-4'-0- $\beta$ -D-glucopyranosyl-6'-0-feruloyl) glucopyranoside.



Isoacteoside (acteoside isomer) [5] was considered as an artifact, which was formed through acyl migration from the 4' to the 6' position of verbascoside during the extraction and purification procedure (5-7). However, isolation of premnafolioside [1] indicated the possibility that trans esterification of the acyl moiety in verbascoside or similar compounds occurred in the plants themselves.

4-epi-Gummadiol-4-O- $\beta$ -D-glucopyranoside [**6**],  $[\alpha]D + 44.8^{\circ}$ , was obtained as a white amorphous powder. From spectroscopic evidence, this compound was proven to be the same as first isolated from the heartwood of *Gmelia arborea* by Anjaneyulu *et al.* (8). In their report, they proposed the structure of **6**, in which the orientation of the sugar moiety at the C-4 position was tentatively assigned based on the direct field effect of the glucose residue onto the chemical shift of the benzylic proton at C-6. However, the chemical shift of H-6 of 4-epi-gummadiol [**6b**] ( $\delta$  5.40) (minor) was close to that of **6** ( $\delta$  5.54), which simply indicated that the aglycone may not be gummadiol, but 4-epi-gummadiol (Table 2).

To confirm this, nOe experiments were performed. On irradiation of the anomeric proton ( $\delta$  4.56), the 11% increase of the signal intensity at H-4 confirmed that the sugar was linked to the OH group at the 4 position, and 11% and 14% nOe effects from H-4 ( $\delta$  5.63) to the anomeric proton and H-5 ( $\delta$  3.16), and 10% from H-5 to H-4 were also observed. Therefore, the sugar moiety must be oriented in the axial position, and the aglycone was proven to be 4-*epi*-gummadiol [**6b**], as mentioned in the literature (8). NOe enhancements of the aromatic protons, on irradiation of H-2 ( $\delta$  5.14) and H-6 ( $\delta$  5.54), helped us to assign the aromatic carbon signals.

On enzymatic hydrolysis, **6** gave D-glucose and an aglycone, a mixture of gummadiol [**6a**] and 4-epi-gummadiol [**6b**]. Although Anjaneyulu et al. (8) expected the aglycone to exist as a thermodynamically stable form, namely **6a**, our spectroscopic data revealed that it was a mixture of two compounds at the acetalic center, in the ratio of 6:4. <sup>13</sup>C- and <sup>1</sup>H-nmr assignments of the glucoside and aglycone, some of which have not been available before, are summarized in Table 2.

### **EXPERIMENTAL**

INSTRUMENTATION.—<sup>13</sup>C-(100 MHz) and <sup>1</sup>H-(400 MHz) nmr spectra were recorded on a JEOL JNM-GSX 400 spectrometer. Ir and uv spectra were recorded on Shimadzu IR-408 and UV-160A spectropho-

| Carbon -                     | Compound |       |                       |            |  |  |  |
|------------------------------|----------|-------|-----------------------|------------|--|--|--|
|                              | 1*       | 3     | <b>4</b> <sup>b</sup> | <b>5</b> ° |  |  |  |
| Aglycone                     |          |       |                       |            |  |  |  |
| C-1                          | 132.7    | 132.9 | 132.96                | 131.4      |  |  |  |
| C-2                          | 112.8    | 112.9 | 112.96                | 117.1      |  |  |  |
| C-3                          | 147.5    | 147.6 | 147.59                | 146.0      |  |  |  |
| C-4                          | 147.4    | 147.4 | 147.38                | 144.6      |  |  |  |
| C-5                          | 117.0    | 117.1 | 117.15                | 116.3      |  |  |  |
| C-6                          | 121.1    | 121.2 | 121.25                | 121.3      |  |  |  |
| C-7                          | 36.7     | 36.6  | 36.57                 | 36.6       |  |  |  |
| C-8                          | 72.3     | 72.1  | 72.11                 | 72.3       |  |  |  |
| Inner Glucose                |          |       | ,                     | ,          |  |  |  |
| C-1'                         | 104.5    | 104.2 | 104.24                | 104.3      |  |  |  |
| C-2'                         | 76.6     | 76.0  | 76.17                 | 75.4       |  |  |  |
| C-3'                         | 79.4     | 81.5  | 81.55                 | 84.0       |  |  |  |
| C-4'                         | 76.2     | 70.6  | 70.47                 | 70.0       |  |  |  |
| C-5'                         | 74.9     | 76.2  | 74.84                 | 75.6       |  |  |  |
| C-6'                         | 63.7     | 62.4  | 69.47                 | 64.6       |  |  |  |
| Rhamnose                     | 0.7      | 02.4  | 07.47                 | 04.0       |  |  |  |
| C-1"                         | 101.9    | 103.0 | 103.05                | 102.7      |  |  |  |
| C-2"                         | 72.4     | 72.4  | 72.26                 | 72.3       |  |  |  |
| C-3"                         | 72.1     | 72.0  | 72.38                 | 72.3       |  |  |  |
| C-4"                         | 74.3     | 73.8  | 73.80                 | 74.0       |  |  |  |
| C-5"                         | 69.3     | 70.4  | 70.71                 | 70.4       |  |  |  |
| C-6″                         | 18.0     | 18.5  | 18.46                 |            |  |  |  |
| Outer Glucose                | 18.0     | 10.)  | 18.40                 | 17.8       |  |  |  |
| C-1‴                         | 104.3    |       | 104 74                |            |  |  |  |
| C-2‴                         |          |       | 104.74                |            |  |  |  |
| C-2<br>C-3‴                  | 75.3     |       | 75.13                 |            |  |  |  |
| C-5<br>C-4‴                  | 78.0     |       | 77.95                 |            |  |  |  |
| C-4<br>C-5‴                  | 70.7     |       | 71.50                 |            |  |  |  |
|                              | 78.3     | 1     | 77.86                 |            |  |  |  |
|                              | 62.1     |       | 62.69                 |            |  |  |  |
| Feruloyl (Caffeoyl)<br>C-1"" | 107 7    | 107 7 | 107 (0                | 10         |  |  |  |
| C-1"<br>C-2""                | 127.7    | 127.7 | 127.69                | 127.7      |  |  |  |
|                              | 111.8    | 111.8 | 111.89                | 115.1      |  |  |  |
| C-3""                        | 150.7    | 150.8 | 150.88                | 146.7      |  |  |  |
| C-4 <sup>m</sup>             | 149.4    | 149.4 | 149.42                | 149.5      |  |  |  |
| C-5""                        | 116.5    | 116.5 | 116.56                | 116.5      |  |  |  |
| C-6""                        | 124.4    | 124.4 | 124.42                | 123.1      |  |  |  |
| C-7""                        | 147.3    | 147.9 | 148.13                | 147.2      |  |  |  |
| C-8""                        | 115.2    | 115.1 | 115.19                | 114.9      |  |  |  |
| C-9''''                      | 168.7    | 168.3 | 168.47                | 169.1      |  |  |  |
| -OMe                         | 56.4     | 56.46 | 56.54                 |            |  |  |  |
|                              | 56.5     | 56.50 | 56.55                 |            |  |  |  |

TABLE 1. <sup>13</sup>C nmr Spectral Data for Premnafolioside [1], Martynoside [3], 6'-0-β-D-Glucopyranosyl Martynoside [4], and Acteoside Isomer 5 (CD<sub>3</sub>OD).

<sup>a</sup>Assignments for 1 were performed by means of 1D and 2D nmr spectroscopies.

<sup>b</sup>Data in this column are from Otsuka (4).

<sup>c</sup>Data in this column are from Miyase et al. (2).

tometers, respectively. Optical rotations and cd spectra were measured with a Union Giken PM-101 automatic digital polarimeter and a JASCO J-720 spectrometer. Ms spectra were recorded on a JEOL JMS-SX 102 mass spectrometer with glycerol as a matrix.

EXTRACTION AND ISOLATION.—The plant material, *P. corymbosa* var. obtusifolia, was collected on an Okinawan island in August, 1989. A voucher specimen (89-PCO-Okinawa) is deposited at the Hebarium of Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine.

|          | Compound            |                                   |                                |                     |                 |                              |                               |  |  |
|----------|---------------------|-----------------------------------|--------------------------------|---------------------|-----------------|------------------------------|-------------------------------|--|--|
| Position | 6۴                  |                                   | Aglycones <sup>c</sup>         |                     |                 |                              |                               |  |  |
|          |                     |                                   | gummadiol (major) [ <b>6a]</b> |                     |                 | 4-epi-gummadiol (minor) [6b] |                               |  |  |
| 1        | 92.7                | _                                 |                                | 89.2                | -               | 92.0                         | _                             |  |  |
| 2        | 86.4                | 5.14 (br s)                       |                                | 88.1                | 5.20 (s)        | 84.3                         | 5.22 (s)                      |  |  |
| 4        | 104.02 <sup>d</sup> | 5.63 (d, 6)                       |                                | 101.12 <sup>8</sup> | 5.49 (br s)     | 96.5                         | 5.79 (dd, 3 <sup>i</sup> , 6) |  |  |
| 5        | 67.4                | 3.16 (dd, 5, 6)                   |                                | 66.4                | 2.89 (dd, 1, 7) | 64.9                         | 3.11 (dd, 5, 6)               |  |  |
| 6        | 81.3                | 5.54 (br d, 5)                    |                                | 83.4                | 4.91 (d, 7)     | 79.8                         | 5.40 (d, 5)                   |  |  |
| 8        | 76.6                | 3.83 (d, 9)                       |                                | 75.1                | 4.00 (d, 9)     | 75.2                         | 3.85 (d, 10)                  |  |  |
|          |                     | 4.04 (d, 9)                       |                                |                     | 4.07 (d, 9)     |                              | 4.03 (d, 10)                  |  |  |
| 1′       | 131.1               |                                   | 1'                             | 129.71              |                 | 128.57                       |                               |  |  |
| 2'       | 109.7               | 6.94 (br d, 2)                    | 1″                             | 135.11              |                 | 135.14                       |                               |  |  |
| 3′       | 148.9°              | -                                 | 2', 2"                         | 106.38              |                 | 107.18                       |                               |  |  |
| 4'       | 149.0°              | [                                 | 5',5"                          | 107.62              |                 | 107.52                       |                               |  |  |
| 5′       | 108.7               | 6.79 (d, 8)                       |                                | 108.28              |                 | 108.14                       |                               |  |  |
| 6'       | 122.5               | 6.86 (ddd, 1 <sup>h</sup> , 2, 8) |                                | 108.51              |                 | 108.57                       |                               |  |  |
|          |                     |                                   | 3', 3"                         | 147.42              |                 | 147.03                       |                               |  |  |
|          |                     |                                   | 4', 4"                         | 147.96              |                 | 147.86                       |                               |  |  |
| 1″       | 137.3               | _                                 | '                              | 148.13              |                 | 148.02                       |                               |  |  |
| 2″       | 108.2               | 7.03 (br d, 2)                    |                                | 148.01              |                 | 148.19                       |                               |  |  |
| 3″       | 149.3               | _                                 | 6', 6"                         | 119.38              |                 | 119.91                       |                               |  |  |
| 4"       | 148.4               | _                                 |                                | 120.30              |                 | 120.30                       |                               |  |  |
| 5″       | 108.9               | 6.76 (d, 8)                       |                                |                     |                 |                              |                               |  |  |
| 6″       | 121.1               | 6.97 (ddd, 1 <sup>h</sup> , 2, 8) |                                |                     |                 |                              |                               |  |  |
| осн,о    | 102.33              | 5.920 (s)                         |                                | 101.17*             |                 | 101.04                       |                               |  |  |
|          | 102.37              | 5.923 (br s)                      |                                | 101.31              |                 | 101.31                       |                               |  |  |
| G-1      | 104.00 <sup>d</sup> | 4.56 (d, 7)                       |                                |                     |                 |                              |                               |  |  |
| 2        | 75.3                |                                   |                                |                     |                 |                              |                               |  |  |
| 3        | 78.33 <sup>f</sup>  |                                   |                                |                     |                 |                              |                               |  |  |
| 4        | 71.2                |                                   |                                |                     |                 |                              |                               |  |  |
| 5        | 78.28 <sup>f</sup>  |                                   |                                |                     |                 |                              |                               |  |  |
| 6        | 62.6                | 3.66 (dd, 5, 12)                  |                                |                     |                 |                              |                               |  |  |
|          |                     | 3.78 (dd, 2, 12)                  |                                |                     |                 |                              |                               |  |  |

TABLE 2. <sup>13</sup>C-nmr and <sup>1</sup>H-nmr Assignments for 4-*epi*-Gummadiol-4-0-β-D-Glucopyranoside [6] and Gummadiols.<sup>6</sup>

Letters and figures in parentheses are multiplicities and coupling constants in Hz.

Measured for CD<sub>3</sub>OD solution.

Measured for CDCl, solution.

<sup>d-s</sup>Assignments may be interchanged.

<sup>b</sup>Couplings were between those and H-2 and H-6, respectively. Cross peaks were observed in the H-H COSY spectrum.

This coupling disappeared on addition of D<sub>2</sub>O.

Pulverized stems (9.70 kg) were exhaustively extracted with MeOH. The MeOH extract was concentrated to 2 liters, and 100 ml of  $H_2O$  was added to obtain 95% aqueous MeOH solution. This solution was extracted with *n*-hexane (1 liter×2), and the MeOH layer was concentrated. This was dispersed in  $H_2O$  (1.5 liters), and then extracted with EtOAc (1.5 liters) and *n*-BuOH (1.5 liters), successively. The *n*-BuOH extract (182 g) was separated by highly porous synthetic resin, Diaion HP-20 cc (20% aqueous MeOH $\rightarrow$ 100% MeOH). The residue of the 60% MeOH eluate was subjected to Si gel cc with increasing amounts of MeOH in CHCl<sub>3</sub>. The 10–12.5% MeOH eluate (1.37 g) was further separated by open cc [Cosmosil, 10% aqueous MeOH (1 liter) $\rightarrow$ 70% aqueous MeOH (1 liter), linear gradient], followed by dccc [CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O-*n*-PrOH (9:12:8:2) to give 115 mg of premnafolioside [1]-enriched fraction. This was finally purified by preparative hplc [Inertsil, MeOH-H<sub>2</sub>O (45:55)] to afford 29 mg of 1.

The residue (410 mg) of the 4% MeOH eluate of Si gel cc was subjected to open cc with the same conditions as above. From the 50% MeOH eluate, 201 mg of 4-epi-gummadiol-4-0- $\beta$ -D-glucopyranoside [6] was obtained.

KNOWN COMPOUNDS ISOLATED.—Verbascoside (=acteoside) [2]: {α]D -95.9° (MeOH, c=0.75) (2). Martynoside [3]: [α]D -60.1° (MeOH, c=0.75); <sup>13</sup>C nmr see Table 1 (2). 6-α-L-(2"-0-*p*-Coumaroyl)rhamnopyranosylcatalpol (=saccatoside): [α]D -103.9° (MeOH, c=0.83) (9). 6-α-L-(4"-0-Feruloyl)rhamnopyranosylcatalpol: [α]D -122.2° (MeOH, c=0.70) (10). Premnoside C, [α]D +23.6° (MeOH, c=0.72) (11). Premnoside D: [α]D +18.5° (MeOH, c=0.70) (11). *erythro*-(4-Hydroxy-3-methoxyphenyl)-2-[4-[2-formyl-(E)-vinyl]-2-methoxyphenoxy}-propan-1,3-diol: [α]D +0.59° (MeOH, c=0.51) (12,13). *threo*-(4-Hydroxy-3-methoxyphenyl)-2-{4-[2-carbinyl-(E)-vinyl]-2-methoxyphenoxy}-propan-1,3-diol: [α]D +1.91° (MeOH, c=1.25) (12, 13). (+)-Lyoniresinol-2a-0-β-D-glucopyranoside: [α]D +45.7° (MeOH, c=0.72); cd (MeOH, c=0.00183) nm ( $\Delta \in$ ) 206 (+20.4), 217 (-14.2), 244 (+11.6), 272 (+3.34), 287 (-1.09) (14, 15). Plucheoside D<sub>1</sub>: [ $\alpha$ ]D -82.3° (MeOH, c=0.69); cd (MeOH, c=0.00346) nm ( $\Delta \in$ ) 212 (-2.17), 236 (+6.48), 257 (-2.98), 280 (+0.11), 342 (-2.66), 399 (-0.40) (16). (-)-Olivil: [ $\alpha$ ]D -34.0° (MeOH, c=0.79) (17, 18).

Premnafolioside [1].—Amorphous powder: [α]D −35.8° (MeOH, c=0.67); ir (KBr) ν max 3399, 2926, 1696, 1632, 1595, 1516, 1273, 1070–1030, 812 cm<sup>-1</sup>; uv λ max (log ε) (MeOH) 206 (4.49), 217 sh (4.31), 231 sh (4.23), 289, (4.13), 326, (4.26) nm; <sup>13</sup>C nmr see Table 1; <sup>1</sup>H nmr (CD<sub>3</sub>OD) δ 1.22 (3H, d, J=6 Hz, H-6"), 2.79 (2H, t, J=7 Hz, H-8), 3.17 (ddd, J=2, 5, 9 Hz, H-5"), 3.20 (dd, J=8, 9 Hz, H-2"), 3.85 (2H, H-6"), 3.39 (dd, J=8, 9 Hz, H-2'), 3.45 (t, J=9 Hz, H-4"), 3.74 (3H, s,  $-OCH_3$ ), 3.87 (3H, s,  $-OCH_3$ ), 4.32 (d, J=9 Hz, H-1"), 4.34 (d, J=8 Hz, H-1'), 4.47 (qd, J=6, 10 Hz, H-5"), 4.58 (dd, J=5, 12 Hz, H<sub>6</sub>-6'), 5.35 (d, J=2 Hz, H-1"), 6.40 (d, J=16 Hz, H-8""), 6.60 (dd, J=2, 8 Hz, H-6), 6.67 (d, J=8 Hz, H-5), 6.68 (d, J=2 Hz, H-2), 6.80 (d, J=8 Hz, H-5""), 7.04 (dd, J=2, 8 Hz, H-6""), 7.17 (d, J=2 Hz, H-2""), 7.62 (d, J=16 Hz, H-7""); hrfabms (negative centroid) m/z [M−H]<sup>-</sup> 813.2819 (C<sub>37</sub>H<sub>4</sub>o<sub>20</sub> requires 813.2817).

4-epi-Gummadiol-4-O-β-D-glucopyranoside [6].—Amorphous powder: [α]D +44.8° (MeOH, c=0.79); uv λ max (log ε) (MeOH) 207 (4.44), 236 (4.05), 286 (3.93) nm; <sup>1</sup>H nmr (Me<sub>2</sub>CO-d<sub>6</sub>) δ 3.16 (dd, J=5, 6 Hz, H-5), 3.86 (d, J=9 Hz, H<sub>4</sub>-8), 4.06 (d, J=9 Hz, H<sub>5</sub>-8), 5.17 (s, H-2), 5.53 (d, J=5 Hz, H-4), 5.79 (d, J=6Hz, H-6) [these data showed no discrepancy from the reported values (8)], <sup>13</sup>C and <sup>1</sup>H nmr (CD<sub>3</sub>OD) see Table 2.

ENZYMATIC HYDROLYSIS OF 6.—Compound 6(59 mg) in 5 ml of H<sub>2</sub>O was treated with an equal amount of crude hesperidinase for 1.5 h at 37°, and the reaction mixture was partitioned between EtOAc (100 ml) and H<sub>2</sub>O (100 ml). The residue of the organic layer was purified by Sephadex LH-20 cc to give 20 mg (48%) of a mixture of aglycones **6a** and **6b**: colorless powder; [ $\alpha$ ]D +14.2° (MeOH, c=0.70); uv  $\lambda$  max (log  $\epsilon$ ) (MeOH) 208 (4.20), 237 (3.80), 286 (3.74) nm; <sup>13</sup>C and <sup>1</sup>H nmr (CDCl<sub>3</sub>) see Table 2.

#### LITERATURE CITED

- 1. H. Otsuka, E. Watanabe, K. Yuasa, C. Ogimi, A. Takushi, and Y. Takeda, *Phytochemistry*, **32**, 983 (1993).
- 2. T. Miyase, A. Koizumi, A. Ueno, T. Noro, M. Kuroyanagi, S. Fukushima, Y. Akiyama, and T. Takemoto, *Chem. Pharm. Bull.*, **30**, 2732 (1982).
- 3. T. Warashina, T. Miyase, and A. Ueno, Phytochemistry, 31, 961 (1992).
- 4. H. Otsuka, Phytochemistry, 32, 979 (1993).
- 5. H. Kobayashi, H. Oguchi, N. Takizawa, T. Miyase, A. Ueno, K. Usmanghani, and M. Ahmad, *Chem. Pharm. Bull.*, **35**, 3309 (1987).
- 6. G. Nonaka and I. Nishioka, Phytochemistry, 16, 1265 (1977).
- 7. L. Birkofer, C. Kaiser, and U. Thomas, Z. Naturforsch., 1051 (1968).
- 8. A.S.R. Anjaneyulu, A. Madhusudhana Rao, V. Kameswara Rao, L. Ramachandra Row, A. Pelter, and R.S. Ward, *Tetrahedron*, **33**, 133 (1977).
- 9. H. Otsuka, Y. Sasaki, K. Yamasaki, Y. Takeda, and T. Seki, J. Nat. Prod., 53, 107 (1990).
- 10. H. Otsuka, N. Kubo, Y. Sasaki, K. Yamasaki, Y. Takeda, and T. Seki, *Phytochemistry*, **30**, 1917 (1991).
- 11. H. Otsuka, N. Kubo, K. Yamasaki, and W.G. Padolina, Phytochemistry, 28, 3063 (1989).
- 12. K. Miki, T. Takehara, T. Sasaya, and A. Sakakibara, Phytochemistry, 19, 449 (1980).
- A. Sawabe, Y. Matsubara, H. Kumamoto, Y. Iizuka, and K. Okamoto, Nippon Nougeikagaku Kaisbi, 60, 593 (1986).
- 14. S. Inoshiri, M. Sasaki, H. Kohda, H. Otsuka, and K. Yamasaki, Phytochemistry, 26, 2811 (1987).
- 15. G. Dada, A. Caorbani, P. Manitto, G. Speranza, and L. Lunazzi, J. Nat. Prod., 52, 1327 (1989).
- 16. T. Uchiyama, T. Miyase, A. Ueno, and K. Usmanghani, Phytochemistry, 30, 655 (1991).
- 17. T. Deyama, T. Ikawa, S. Kitagawa, and S. Nishibe, Chem. Pharm. Bull., 34, 523 (1986).
- 18. F. Abe, T. Yamauchi, and A.S.C. Wan, Chem. Pharm. Bull., 36, 795 (1988).

Received 19 January 1993